SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
CARRIÈRES
NEWS
ACCES ENABLERS
Trier par mots-clés
Algorithmes
algorithmique
Améliorationdeprocess
Audit
AutoML
BeEnabler
BigData
CNN
ComputerVision
ContrôleQualité
Cosmétique
Data
DataGouvernance
DataScience
DataVisualisation
DeepLearning
DétectionAnomalie
DétectionAnomalies
DétectionObjets
Energie
equationsdifferentielles
Event
Fewshotlearning
Forecast
Forecasting
Fraude
GAN
GenAI
Géoscience
GPU
IA
IA generative
Images
Immobilier
Industrialisation
Innovation
IntelligenceArtificielle
Interprétation
LabInsights
large language models
LectureIntelligente
LLM
LLMs
MachineLearning
MaintenancePrédictive
MCMC
MLops
Modèle
NLP
OpenCV
Optimisationdeproduction
Prévision
probabiliste
ProjetCollaboratif
Python
ReconnaissanceObjets
Réseau
Rewind
RH
Segmentation
SHAP
Tensorflow
TimeSerie
TimeSeries
virtualsensor
SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
>WE HIRE<
CARRIÈRES
NEWS
ACCES ENABLERS
OK
Industrie
IDENTIFIER AUTOMATIQUEMENT DES PIÈCES INDUSTRIELLES
#
Améliorationdeprocess
#
ComputerVision
#
DétectionObjets
#
MaintenancePrédictive
OBJECTIFS
Détection automatique des pièces de moteurs sur des images top view
Identification de la référence dans un catalogue métier
Développement d’une solution capable de reconnaitre la pièce avec peu d’exemples par objets (< 10 images)
Développement d’un outil permettant aux spécialistes métier de visualiser et imprimer la fiche de route de chaque pièce
ALGORITHMES
Détection du fond du plan de travail
Segmentation de l’image par clustering de couleurs et composants connectées
Classification par une méthode de Few Shot Learning
Parlez-en AVEC UN EXPERT !
Tristan Barbagelata
Business Manager
tbarbagelata@aquiladata.fr
> JE LE CONTACTE !
VOIR TOUS LES USE-CASES